If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2=-19a-35
We move all terms to the left:
2a^2-(-19a-35)=0
We get rid of parentheses
2a^2+19a+35=0
a = 2; b = 19; c = +35;
Δ = b2-4ac
Δ = 192-4·2·35
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-9}{2*2}=\frac{-28}{4} =-7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+9}{2*2}=\frac{-10}{4} =-2+1/2 $
| (4x-8)-(3x-5)=360 | | 4.9t2-14t-92=0 | | x25.75= | | (4x-8)+(3x-5)=360 | | 10x+13+2x-2+x+13=180 | | 12+(6xx)=8xx | | 3n+9=24n= | | 70=7+3x | | 3x-18=x+24 | | 3x(x+3)+2=5x(x−2)+11 | | 4(0.5x-3)=0.4(12-3x) | | 11d+9=5d+28 | | −30−6r= −36 | | 9x-30+9x-30+7x+15=180 | | 3(x+3)+2=5(x−2)+11 | | 3(y+3)+2=5(y−2)+11 | | A^2=36x10^6 | | k/7−1=3 | | 8p^2-7=-90 | | 0p+9-11-p=-2(2p+4)-3(2p-2) | | -10x+16=-3x+2 | | 8x-2=-9+7xX=-7 | | -4(-9+x)=-32 | | 6(m−5)=2(m+29)* | | 6u2–6u+8=0 | | -18=6+w | | 7q2+8q+4=0 | | 075p-2=0.25p | | 4x+2x-10=0 | | 10.8*x=18 | | 3y-2y-8y=0 | | 3x^2+375x=0 |